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The size ratio between planktonic predators and their prey 

Abstract-Size selectivity spectra of 28 planktonic 
predators from 18 studies in the literature are com- 
pared. The linear size ratio between predators and 
their optimal prey is 1 : 1 for a dinoflagellate, 3 : 1 
for other flagellates, 8 : 1 for ciliates, 18 : 1 for rotifers 
and copepods, and - 50 : 1 for cladocerans and mer- 
oplankton larvae. These size ratios seem consistent 
within groups, and their validity is supported by 
quantitative information from the literature. How- 
ever, a difference between filter feeders and raptorial- 
interception feeders, preferring relatively smaller and 
larger prey respectively, is evident across the taxo- 
nomic groups. A classification of planktonic preda- 
tors into functional groups is therefore crucial for the 
construction of models of pelagic food webs. 

The pathways for flow of organic matter in 
pelagic food webs are to a wide extent deter- 
mined by the food selectivity of the pelagic 
predators. Several criteria may be involved in 
food selection, including prey size, motility, 
surface characteristics, biochemical composi- 
tion, electrostatic forces, etc. (e.g. Poulet and 
Marsot 1978; Robinson 1983; Gilbert and 
Bogdan 1984; Van Alstyne 1986). Among these 
criteria, prey size is generally believed to play 
a major role, and usually a fixed size ratio of 
10 between predator and prey is assumed 
(Sheldon et al. 1977; Conover and Huntley 
1980; Azam et al. 1983). This assumption is 
in accord with the classification of plankton 
into logarithmic size fractions (pica, nano, mi- 
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cro, meso, and macro, sensu Sieburth et al. 
1978) and it has facilitated integrative tro- 
phodynamic studies of pelagic environments 
above the population level. This assumption 
has also been instrumental in the formulation 
of models of pelagic ecosystems for theoretical 
and steady state considerations (e.g. Kerr 1974; 
Azam et al. 1983) as well as for the formulation 
of carbon budgets and dynamic simulation (e.g. 
Riemann et al. 1990; Maloney and Field 199 1). 
Longhurst (1990) asked whether there is a gen- 
eralized prey : predator ratio within protists, 
invertebrates, fish, and cetaceans and found a 
standard deviation of 2.5 times the mean pred- 
ator : prey ratio. He concluded that including 
more data only increases scatter around the 
regression line, and therefore that it is difficult 
to generalize ratios even within groups that 
appear to be relatively homogeneous. 

In this note we re-evaluate the assumption 
of a fixed size ratio between pelagic predators 
and their prey on the basis of data now avail- 
able in the literature. Data were selected from 
laboratory studies where size selectivity has 
been assessed with one prey size at a time at 
a constant initial volume fraction and from in 
situ studies with tracer particles added to the 
natural prey composition. In some of these 
studies selectivity was expressed as an Ivlev 
electivity index (Ivlev 195 5). The studies cover 
pelagic predators of 5-1,000 pm (nano-, mi- 
cro-, and mesozooplankton) from freshwater 
as well as marine environments. 

Size selectivity is usually expressed as a ratio 
of ingestion rates of two or more size classes 
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Fig. 1. Size selectivity spectra as expressed by maximum clearance vs. prey size. [a.] Hypothetical spectrum for an 

idealized filtrator with uniform filter porosity. [b.] Hypothetical spectrum for an idealized predator feeding by direct 
interception. [c.] Example of a spectrum from the literature illustrating the definition of optimum, 50%-min and -max, 
and 10%-min and -max prey sizes. 

of prey normalized against their availabilities. 
Because clearance measures the ratio of inges- 
tion to prey availability (density), size selec- 
tivity may also be expressed by maximum 
clearance (i.e. clearance at low prey density) 
for different prey sizes. The size range of par- 
ticles that can be ingested by a pelagic predator 
is limited by the morphology of its feeding 
apparatus (e.g. maximum prey size may be 
set by the width of the cytostome, mouth or 
esophagous, and specifically by the carapace 
slit in cladocerans or by the distance between 
bands in rotifers and double-band larvae: Gli- 
wicz 1977; Peters 1984; Rassoulzadegan et al. 
1984; B. Hansen 199 1). For filtrators, a min- 
imum prey size is set by the mesh size of the 
filtering apparatus (Fig. la). Within these 
structural limits, a functional size selectivity 
often occurs. For predators feeding by direct 
interception, theoretically no minimum prey 
size exists, but the encounter rate, and there- 
fore maximum clearance, is proportional to 
the linear size of the prey (Fenchel 1984; Mon- 
ger and Landry 1990; cf. Fig. 1 b). 

However, size selectivity as expressed by the 
actual maximum clearance vs. prey size will 
deviate from the idealized spectra in Fig. la,b 
toward a more bell-shaped distribution. This 
deviation is due to variabilities in mesh size, 
prey size and shape, and the existence of 
boundary layers and electrostatic forces. Be- 
cause of a lack of similarities, we have not 

attempted to fit the various observed size se- 
lectivity spectra to theoretical models. Instead, 
data were harmonized by the following pro- 
cedure (cf. Fig. lc). Data points of maximum 
clearance vs. prey size (or an-equivalent mea- 
sure of selectivity) were plotted on linear scales 
and connected by linear interpolation. The op- 
timum prey size was defined as the data point 
showing maximum clearance. Prey size ranges 
corresponding to > 50% and > 10% of maxi- 
mum clearance were determined to describe 
the width and skewness of the selectivity spec- 
trum (Fig. lc). Predator and prey sizes were 
expressed as equivalent spherical diameters 
[ESD = (v01./0.523)~.~~]. 

Many studies express predator size in terms 
of body length or weight. We converted body 
length into body dry weight using regressions 
either from the actual study or from McCauley 
(1984). Dry weight was converted to carbon 
by a factor of 0.45 and carbon to volume by a 
factor of 8.3 pm3 pg C- 1 (corresponding to 0.12 
pg C hm-3, e.g. Boraas 1983; Verity and Lang- 
don 1984). In some studies where only body 
length was given and no applicable length- 
weight regression was found (e.g. Rothhaupt 
1990), body volume was estimated by general 
geometrical formulae from McCauley (1984). 

Information on size selectivity was extracted 
from studies covering representatives from 
various taxonomic groups of planktonic pred- 
ators (Table 1). A plot of optimum prey size 
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Fig. 2. Optimum prey size vs. predator size, both expressed as equivalent spherical diameter (ESD), data from 
Table 1. Lines represent average predator : prey size ratios for different groups of organisms (cf. Table 2). 

against predator size (Fig. 2) shows predator: to 8 : 1 (Fenchel 1982; Goldman and Caron 
prey size ratios ranging from 1 : 1 to - 100 : 1 1985; Anderson et al. 1986; Chrzanowski and 
and thus fails to support the assumption of a Simek 1990; Moestrup and Andersen 199 1). 
general and fixed ratio. A significant scaling is, The prymnesiophytes have a different mech- 
however, apparent within each taxonomic anism of prey capture but show similar size 
group, with a 1 : 1 ratio for the only heterotro- ratios (2 : 1 to 16 : 1; Green 199 1; Kawachi et 
phic dinoflagellate reported, 3 : 1 for other fla- al. 1991). 
gellates, 8 : 1 for the oligotrich ciliates, and 18 : The dinoflagellates, however, differ consid- 
1 for the rotifers and meroplankton larvae. erably from the other raptorial flagellates found 
This scaling of the predator : prey size ratio is in the plankton. The reported size ratios be- 
most evident for copepods, which also repre- . tween prey and predator is within the range 
sent a major part of the data set, and least showed in Fig. 3 (0.4 : 1 to 7 : 1; e.g. Gaines 
evident for meroplankton larvae, where opti- and Elbrachter 1987; Jacobson and Anderson 
mum prey size seems to be uncorrelated with 1986; Strom 1991; P. J. Hansen 1991, 1992). 
predator size. In an attempt to provide a ten- The choanoflagellates are filter feeders. The 
tative synthesis of the information given in dimensions of their filter allow them to feed 
Table 1, data for each taxonomic group were 
summarized by averaging predator : prey ra- 
tios (Table 2) and visualized as selectivity 
spectra (Fig. 3). 

In view of the limited data base, these spec- 
tra must be considered provisional and not 
necessarily representative for the taxonomic 
groups. In order to evaluate whether the stud- Opt’ 
ied species represent the individual groups, we 
took qualitative data regarding the feeding 
mechanisms and type of prey into considera- 50% 

tion. 
Particle uptake is well documented in sev- 

era1 planktonic flagellate groups (Patterson and 10% 

Larsen 199 1). The heterokonts (chrysophytes, 
bicoecids, pedinellids) and the kinetoplasts 

3O:l 1O:l 3:l 1:l 
Predator:Prey (ESDESD) 

comprise a group of raptorial flagellates with Fig. 3. Provisional size selectivity spectra for different 
observed predatory : prey size ratios from 2 : 1 pelagic predators based on information in Tables 1 and 2. 
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Table 1. Data from the literature on size selectivity by planktonic predators. Definitions of optimum, 50%-min, 
50%-max, 10%-min, and lO%-max and calculation of predator ESD (equivalent spherical diameters) are given in Fig. 
1 and text. All data in pm. 

Predator ESD Length opt. 
SO%- 
min 

50%- 
max 

lO%- 
min 

lO%- 
max Reference 

Flagellates 
Ochromonas danica 
Bodo-like 
Bodo-like 
Bodo-like 
Gyrodinium spirale 

Ciliates 
Lohmaniella spiralis 
Strombidium reticulatum 
Strombidium vestitum 

Rotifers 
Brachionus angularis 
Brachionus “strain F’ 
Brachionus “strain B” 
Brachionus calycijlorus 

Meroplankton 
Mediomast us. fragile 
Philine aperta 
P. aperta 
P. aperta 
P. aperta 
Mercenaria mercenaria 
Mytilus edulis 
M. edulis 
M. edulis 
Ostrea edulis 

Copepod nauplii 
Acartia tonsa N2-N3 
A. tonsa N2-N3 
A. tonsa N2-N3 
A. tonsa N4-N5 
Calanus pacijicus N5 

Copepodites 
Diaptomus sicilis 
A. tonsa C3-C4 
C. pacificus Cl 
A. tonsa males 
A. tonsa females 
Pseudocalanus minutus 
Temora longicornis 
Acartia clausi 
Eurytemora herdmani 
Calanus jinmarchicus 
A. tonsa 
Diaptomus graciloides 
Centropages typicus 

Cladocerans 
Daphnia cuculata 
Daphnia longispina 
Bosmina coregoni 
Chydorus sphaericus 
Diaphanosoma brachyurum 

6.1 1.4 Chrzanowski and Simek 1990 
4.9 1.4 Chrzanowski and Simek 1990 
4.4 1.4 Chrzanowski and Simek 1990 
3.4 1.3 Chrzanowski and Simek 1990 

28 32 7.6 64 4.2 90 P. J. Hansen 1992 

66 9.7 5.4 15.2 2.3 17.0 Jonsson 1986 
42 7.9 3.3 8.6 1.3 9.3 Jonsson 1986 
26 2.1 1.6 2.9 7.9 Jonsson 1986 

66 120 3.5 1.0 5.7 18.1 Rothhaupt 1990 
83 150 6.1 2.7 12.6 17.4 Rothhaupt 1990 

126 230 6.0 2.1 16.7 Rothhaupt 1990 
139 250 8.8 6.2 2.0 Rothhaupt 1990 

148 170 6.9 6.4 9.2 3.8 11.4 B. Hansen 1993 
214 149 4.6 3.1 6.3 B. Hansen 1991 
280 239 6.5 4.0 16.7 1.5 B. Hansen 1991 
317 274 4.4 3.9 6.6 1.5 B. Hansen 199 1 
441 392 4.5 3.9 7.4 1.8 B. Hansen 199 1 
100 136 4.1 3.5 5.2 6.2 Riisgird 1988 
99 120 2.9 1.4 5.4 7.4 Riisgard et al. 1980 

236 175 2.9 2.1 4.5 1.8 Riisgard et al. 1980 
241 175 2.9 2.5 6.9 Riisgard et al. 1980 
208 3.6 8.4 Walne 1965 

97 140 6.8 5.4 7.9 4.9 11.1 Berggreen et al. 1988 
100 145 7.2 6.1 14.7 4.5 Berggreen et al. 1988 
112 160 7.0 4.5 12.4 4.0 Berggreen et al. 1988 
135 190 4.0 3.6 17.5 2.6 Berggreen et al. 1988 
237 28.7 19.0 29.6 5.0 Fernandez 197 9 

398 14.1 8.9 22.0 4.0 Vanderploeg et al. 1984 
279 400 14.5 8.8 4.4 Berggreen et al. 1988 
289 28.7 12.3 7.0 Fernandez 197 9 
453 700 14.5 11.2 91.0 4.0 153.0 Berggreen et al. 1988 
499 1,000 14.8 11.1 77.0 4.4 137.0 Berggreen et al. 1988 
414 14.4 6.0 28.0 4.5 32.0 Poulet 1977 
558 15.0 6.5 33.0 Poulet 1977 
353 25.0 35.0 Poulet 1977 
381 16.0 8.0 33.0 6.7 Poulet 1977 
855 80.0 27.0 137.0 7.0 Kisrboe and Runge unpubl. 
444 32.0 Wilson 1972 
325 31.0 27.0 35.0 Gliwicz 1977 
559 32.0 25.0 37.0 9.2 120.0 Wolgemuth unpubl. 

284 
297 
311 
344 
277 

7.0 15.0 24.0 Gliwicz 1977 
6.0 20.0 25.0 Gliwicz 1977 

12.0 24.0 Gliwicz 1977 
11.0 20.0 Gliwicz 1977 
10.0 17.0 Gliwicz 1977 
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Table 2. Summary of literature data on size selectivity by planktonic predators, based on Table 1 (terms defined 
in Fig. 1 and text). All data expressed as ratios between predator and prey equivalent spherical diameters (ESD). 
Averages + standard errors (calculated on log-transformed data) and number of observations (in parentheses) are given. 

Predator: prey size (ESD : ESD) 

Predator 

Ciliates 
Rotifers 
Meroplankton 
Nauplii 
Copepodites 
Cladocerans 

opt. 

8+2 (3) 
17-+2 (4) 
50*9 (10) 
18?4 (4) 
18-t3 (14) 
45+3 (2) 

50%-min 

13+1 (3) 
42+ 11 (4) 
66& 13 (9) 
23*4 (4) 
33+6 (12) 

50%-max 

6-tl (3) 
8+1 (3) 
9+5 (10) 
9*1 (4) 

lo+1 (11) 
23?3 (5) 

10%-min 

31-tl (3) 
69 (1) 

138+48 (5) 
28?6 (4) 
76-t9 (10) 

1 O%-max 

4*1 (3) 
441 (2) 

14&l (3) 
9 (1) 
5+2 (4) 

14&l (5) 

on the smallest bacteria, suggesting a predator : 
prey ratio up to 30 : 1 (Andersen 1988/1989). 
However, large prey apparently can also be 
ingested (predator : prey ratios from 2 : 1 to 7 : 
1; Fenchel 1982; Geider and Leadbetter 198 8; 
Andersen 1988/l 989). 

Observations on the spirotrich ciliates (oli- 
gotrichs and tintinnids) confirm the range 
shown in Fig. 3 (2.5 : 1 to 30 : 1; Heinbokel 
1978; Spittler 1973; Rassoulzadegan 1978, 
19 8 2; Rassoulzadegan and Etienne 19 8 1). 
Prostomatids (e.g. Tiarina, Balanion, Holo- 
phrya) and Litostomatids (e.g. Didinium) have 
very flexible cytostomes, allowing them to in- 
gest prey of their own size. The observed size 
ratio between predator and prey range from 1 : 
1 to 30 : 1 (Klaveness 1984; Stoecker et al. 1986; 
Madoni et al. 1990). Some (e.g. Coleps) are 
even histophagous (feeding on large wounded 
prey, Klaveness 1984). Scuticociliates show size 
ratios from 10 : 1 to 30 : 1 (Fenchel 1980). 

Most planktonic rotifers are filter feeders 
with predator : prey size ratios as described in 
Fig. 3 (5 : 1 to 32 : 1; e.g. Pilarska 1977; Pour- 
riot 1977; Hino and Hirano 1980; Starkweath- 
er et al. 1979). Some rotifers are, however, 
raptorial feeders (e.g. the order Ploima, the 
genus Asplanchna), with size ratios of 1.5 : 1 
to 5: 1 (Pourriot 1977; Gilbert 1978, 1985; 
Gilbert and Stemberger 198 5; Gilbert and Kirk 
1988). The genus Synchaeta is both filtrator 
and raptorial with size ratios of 1.5 : 1 to 17 : 
1 (Egloff 1988). 

Observations on meroplankton larvae with 
double cilia bands (Annelida, Echiorida, Mol- 
lusca, Nemertini, and Entoprocta) follow the 
pattern shown in Fig. 3, with predator : prey 
size ratios of 30 : 1 to 125 : 1 (Daro and Polk 
1973;ChiaandKoss 1978;Sprung 1984,1989). 
For meroplankton with a single cilia band 

(Phoronidae, Brachiopoda, Echinodermata, 
and Enteropneusta), wide retention spectra are 
reported (Strathmann 197 1; Rassoulzadegan 
and Fenaux 1979; Rassoulzadegan et al. 1984). 
These larvae are observed to ingest relatively 
large particles, with predator : prey size ratios 
down to - 5 : 1 for the largest particles ingested 
(Strathmann 197 1; McEdward 1984). 

Most planktonic copepods are suspension 
feeders. Many genera are described as more or 
less mechanical filter feeders (e.g. Temora, 
Pseudocalanus, Paracalanus, and Diaptomus; 
Vanderploeg 198 1; Tiselius and Jonsson 199 1). 
Several genera are both filtrators and raptorial 
feeders (e.g. Calanus, Acartia, Centropages, 
Eucalanus, Diaptomus, Aetidius, Oithona, and 
Cyclops) depending on the prey size (Robert- 
son and Frost 1977; Richman et al. 1980; Lam- 
pitt and Gamble 1982; Strickler 1984; Price 
and Paffenhiifer 1986; Vanderploeg et al. 1988; 
Tiselius 1989; Jonsson and Tiselius 1990). 
Field studies reveal that they exploit prey sizes 
over a wider range than presented in Fig. 3, 
especially in terms of the minimum particle 
size; they have a predator : prey size ratio of 
3 : 1 to 180 : 1 (e.g. Poulet 1973, 1977; O’Con- 
ners 1980) but an optimal particle size ratio 
down to 65 : 1 (e.g. Paffenhofer and Knowles 
1978; Vanderploeg 198 1; Vanderploeg and Paf- 
fenhofer 1985). 

Some pelagic copepods are, however, strictly 
raptorial (some species of the genera Cyclops, 
and Calanoid genera like Euchaeta, Pareuchae- 
ta, Labidocera, Tortanus, and Anomalocera; 
Anraku and Omori 1963; Whitehouse and 
Lewis 1973; Brand1 and Fernando 1978; Ker- 
foot 1978). The raptorial species often have 
the ability to macerate their prey. The size 
ratio between predator and prey is, however, 
often not correlated to predictable structural 



400 NC 

limitations but rather is a handling problem 
(Vanderploeg et al. 1988). 

Among the planktonic cladocerans, two fun- 
damentally different feeding modes are devel- 
oped. For raptorials (Onychopoda: Evadne, 
Podon, Bothotrephes, and Polyphemes; and 
Haplopoda: Leptodora), for which the upper 
size limit is large to infinite because of grasp- 
ing, the size ratio between predator and prey 
is reported to be 1: 1 to 17 : 1 (Nival and Rave- 
ra 1979; Nielsen 199 1). All other cladocerans 
(Anomopoda) are filter feeders, and more or 
less mechanical filtering is described for some 
genera (Daphnia, Diaphanosoma, Chydorus, 
Bosmina) (Gliwicz 1969; Hessen 1985). A 
continuum for mechanical filter feeding to rap- 
torial feeding is suggested, with a certain dis- 
criminative feeding mode for Bosmina 
(DeMott 1982; Bern 1990) and a specialization 
on larger particles for Holopedium (Hessen 
1985). The predator : prey ratio ranges from 5 : 
1 to 18 : 1 for the maximum and optimum 
particle sizes, but for the minimum particle 
sizes a predator : prey ratio up to 1 : 1,000 is 
reported (e.g. Burns 1968; McMahon and Rig- 
ler 1965; DeMott 1982; Hessen et al. 1986; 
Vaque and Pace 1992). 

In general, the qualitative information from 
the literature supports the pattern that emerges 
from the limited number of quantitative stud- 
ies (Fig. 3); however, exceptions do occur in 
almost all groups, as described above. In par- 
ticular, a difference between filter feeders and 
raptorial-intercept feeders is seen across tax- 
onomic groups. 

Quantitative information on size selectivity 
by planktonic predators is scarce, especially for 
raptorials and microphagous filtrators (e.g. cla- 
docerans), i.e. for those predators that deviate 
furthest from the often assume 10 : 1 predator : 
prey size ratio. When more solid information 
on the size selectivity of these organisms be- 
comes available, it may be possible to cate- 
gorize heterotrophic plankton into functional 
groups based on feeding mechanisms rather 
than taxonomy. 

Food-web structure is a flexible attribute of 
pelagic ecosystems. The actual dominance of 
predators with preference for smaller or larger 
prey will influence the number of steps in the 
food chains (i.e. the number of trophic levels 
sensu Lindemann 1942) and thereby deter- 
mine whether primary production is efficiently 
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passed to larger organisms or remineralized 
(the “link-or-sink” question; Williams 198 1; 
Sherr and Sherr 1988). 

The complex pattern that emerges from Figs. 
2 and 3 suggests difficulty in constructing a 
simple size-based model of the pelagic food 
web (Longhurst 1990). The different functional 
groups, however, rarely occur simultaneously 
in the same location. Thus, the freshwater me- 
sozooplankton is usually dominated by either 
copepods or cladocerans and coastal micro- 
zooplankton by either ciliates or dinoflagel- 
lates. With more knowledge about the size se- 
lectivity of the various functional groups of the 
zooplankton and about their actual occurrence 
in a given pelagic environment, it should be 
possible to construct a reliable yet simple size- 
based model of the pelagic food web for that 
particular situation. 
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