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Photoacclimation by phytoplankton determines the
distribution of global subsurface chlorophyll
maxima in the ocean
Yoshio Masuda 1,7✉, Yasuhiro Yamanaka1,8, Sherwood Lan Smith2,7, Takafumi Hirata3,8, Hideyuki Nakano4,

Akira Oka 5 & Hiroshi Sumata 6

Subsurface chlorophyll maxima are widely observed in the ocean, and they often occur at

greater depths than maximum phytoplankton biomass. However, a consistent mechanistic

explanation for their distribution in the global ocean remains lacking. One possible

mechanism is photoacclimation, whereby phytoplankton adjust their cellular chlorophyll

content in response to environmental conditions. Here, we incorporate optimality-based

photoacclimation theory based on resource allocation trade-off between nutrient uptake and

light harvesting capacity into a 3D biogeochemical ocean circulation model to determine the

influence of resource allocation strategy on phytoplankton chlorophyll to carbon ratio dis-

tributions. We find that photoacclimation is a common driving mechanism that consistently

explains observed global scale patterns in the depth and intensity of subsurface chlorophyll

maxima across ocean regions. This mechanistic link between cellular-scale physiological

responses and the global scale chlorophyll distribution can inform interpretation of ocean

observations and projections of phytoplankton responses to climate change.
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Photoacclimation is a dynamic physiological response to
light availability, manifested as variations of the intracel-
lular concentrations of light-harvesting pigments, which are

most commonly observed as chlorophyll. Under low light con-
ditions, phytoplankton increase their chlorophyll to carbon bio-
mass ratio in a cell (cellular chl:phyC) in order to harvest more
photons1–3. The cellular chl:phyC ratio is also constrained by
nutrient availability and temperature1–4. Data5 compiled from
incubation experiments reveal that cellular chl:phyC ratios vary
by a factor of 606. In field data, cellular chl:phyC varies by a factor
of 107,8. Geider3 proposed an empirical formula using differential
equations for the dynamics of cellular chl:phyC, based on the
results of incubation experiments. Other empirically based for-
mulae for cellular chl:phyC have been developed to estimate net
oceanic primary production from satellite observations6,9.

Photoacclimation, via changes in cellular chl:phyC, sub-
stantially impacts bulk chlorophyll concentrations and the
resultant global distribution of oceanic chlorophyll. Vertical
chlorophyll profiles generally exhibit maxima below the ocean
surface, which are termed subsurface chlorophyll maxima (SCM)
or deep chlorophyll maxima. SCM are observed nearly ubiqui-
tously, in subtropical10, equatorial11–13, subpolar14, polar15–18,
and upwelling regions19. Observations reveal substantial regional
differences in typical SCM depth, which varies from 100–160 m
in the subtropics10, to around 40 m in subpolar regions14. SCM
depth is closely associated with the depth of the nutricline20, at
which nutrient concentrations sharply increase downward. The
mechanisms underlying SCM formation have long been discussed
and debated20. In subtropical regions, photoacclimation is
recognized as an important mechanism underlying SCM
formation21–24, where it is attributed mostly to increases in cel-
lular chl:phyC with depth. For equatorial SCM, some studies have
highlighted the importance of photoacclimation25, while others
regard SCM as peaks of biomass26. In the subpolar, polar, and
upwelling regions, the role of photoacclimation in SCM forma-
tion remains unclear.

The purpose of the study is to evaluate to what degree pho-
toacclimation, based on strategic resource optimization, deter-
mines global distributions of chlorophyll and hence SCM. We
implemented the 0D Flexible Phytoplankton Functional Type
(FlexPFT) model of Smith et al.27 within a global biogeochemical
ocean circulation model. The FlexPFT model combines theories
for phytoplankton physiology as proposed by Pahlow28 and
others29,30. This theory accounts for intracellular resource allo-
cation among structural material, nutrient uptake, and light
harvesting associated with the chloroplast (Supplementary
Fig. 1a). Phytoplankton are assumed to optimize their resource
allocation to nutrient uptake versus light-harvesting biomole-
cules, depending on light, nutrient, and temperature conditions,
in order to maximize their growth rate. Under low light and
nutrient-replete conditions, phytoplankton increase their
resource allocation for light harvesting (chloroplast) while
decreasing that for nutrient uptake (Supplementary Fig. 1b). This
resource allocation theory has recently provided the first theo-
retical derivation31 of the widely applied empirical Droop cell
quota model32. Pahlow’s model28 has also explained the results of
incubation experiments33.

Results and discussion
Role of photoacclimation in SCM formation. The simulation
reproduces the regional differences in SCM depth among sub-
polar, subtropical, and equatorial regions as observed in the
North Pacific and Atlantic, with a slightly shallower SCM in the
Atlantic subtropical regions (Fig. 1a–d). Simulated SCM is

frequently located around the nutricline, where vertical nutrient
gradients are steepest (Fig. 1e, f). Since chlorophyll concentration
is given by the product of phytoplankton carbon biomass con-
centration (phyC) (Fig. 1g, h) and cellular chl:phyC (Fig. 1i, j),
SCM depth varies with latitude as a consequence of regional
differences in the vertical profiles of phyC and cellular chl:phyC.
phyC is maximal at the surface in most oceanic regions, (Fig. 1g,
h), consistent with observations34. Maximal values of cellular chl:
phyC (Fig. 1i, j), on the other hand, tend to occur at greater
depths (60–130m). This result highlights the need to account for
photoacclimation when modeling and interpreting observations
of chlorophyll, which despite being the most commonly observed
metric of phytoplankton, is not a good proxy for their biomass4,6.

By comparing the vertical profiles of chlorophyll concentration,
cellular chl:phyC, and phyC in the subtropical, equatorial, subpolar,
Antarctic, and upwelling regions (Fig. 2), respectively, we show that
photoacclimation mainly determines the SCM depth. In our model
results, SCM do not correspond to the maxima of phyC, which is
consistent with previous laboratory results4. In subtropical regions,
SCM appear at 118m depth, at which phyC is one-third of its
surface value, while cellular chl:phyC is 50 times its value at the
surface (Fig. 2f). Since the cellular chl:phyC varies more over depth
than does phyC, the SCM depth resides near the depth of the
maximum cellular chl:phyC (Fig. 2a), i.e., deep SCM are formed. In
subpolar regions, where the SCM are shallow (28m depth), cellular
chl:phyC at the surface is about 1/5 of its maximum at 82m depth,
while phyC at the surface is about 16 times its value at 82m
(Fig. 2h). Therefore, the SCM depth occurs near the depth of the
maximum phyC, relatively close to the surface (Fig. 2c). Hence in
these regions, the SCM depth is primarily determined by the extent
to which cellular chl:phyC at the surface is less than its maximum
value, which occurs in the subsurface. This SCM formation
mechanism is common to the equatorial (Fig. 2b, g), Antarctic
(Fig. 2d, i), and upwelling regions (Fig. 2e, j).

In the resource allocation theory, cellular chl:phyC is the
product of the chlorophyll to carbon biomass ratio within the
chloroplast (chloroplast chl:phyC) (Fig. 1k, l), and the resource
allocation ratio for (i.e., the ‘size’ of) the chloroplast (Fig. 1m, n).
For example, if chloroplast chl:phyC is 0.3 g chl mol C−1 and the
resource allocation ratio for the chloroplast is 0.5 (non-
dimensional), cellular chl:phyC is 0.15 g chl mol C−1. Chloroplast
chl:phyC depends on only light intensity27. As light intensity
decreases with depth, chloroplast chl:phyC increases from the
surface to its maximal depth, which is about 90 m in equatorial
regions and 50 m in subpolar regions. Below the maximal depth,
chloroplast chl:phyC decreases with depth. The balance between
benefits and respiration costs of maintaining chlorophyll30

determines the depth of maximal chloroplast chl:phyC. The
depth of maximal chloroplast chl:phyC is, in turn, a major
determinant of the depth of maximal cellular chl:phyC.

Values of the intracellular resource allocation ratio to the
chloroplast near 0 (or 1) mean that resources are mainly
allocated to nutrient uptake (or light harvesting), with minimal
allocation to the competing use. At depths below about 130 m,
where light intensity is consistently low, this resource allocation
is heavily skewed toward the chloroplast in all oceanic regions.
By contrast, above about 130 m in low nutrient regions such as
the subtropics, this resource allocation is heavily skewed toward
nutrient uptake, and therefore few resources are allocated to the
chloroplast. On the contrary, near the surface in high nutrient,
e.g., subpolar, regions, phytoplankton resource allocation is more
evenly balanced between chloroplast and nutrient uptake.
Regional differences in the fractional resource allocation to the
chloroplast caused by different nutrient conditions mainly
determine regional patterns of cellular chl:phyC. This explains
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Fig. 1 Meridional sections of biogeochemical variables associated with the formation of subsurface chlorophyll maxima in the North Pacific and
Atlantic Oceans. Distributions from the North Pacific (160° E, R/V Hakuho-Maru KH12-314, 6 July 2012 to 14 Aug 2012) and Atlantic (Atlantic Meridional
Transect AMT-14, 26 April 2004 to 02 June 2004) of a, b observed chlorophyll concentration (μg chl L−1). Simulated distributions during July and May in
2004 (the final simulation year), respectively, of c, d chlorophyll concentration (μg chl L−1), e, f nitrate (NO3) concentration (μmol N L−1), g, h
phytoplankton carbon biomass concentration (phyC, μmol C L−1), i, j cellular chlorophyll to carbon ratio (chl:phyC in a cell, g chl molC−1), k, l chloroplast
chlorophyll to carbon ratio (chl:phyC in the chloroplast, g chl molC−1), m, n fractional resource allocation to chloroplast.
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why cellular chl:phyC tends to be very low near the surface in the
subtropics, and more generally, why SCM tend to be deeper in
low nutrient regions than in high nutrient regions.

Previous observational studies have highlighted the important
role of nutricline depth as a determinant of SCM depth. Resource
allocation theory provides a more detailed mechanistic basis for
the dependence of SCM depth on nutricline depth as well as light.
Because nutrient concentrations increase steeply with depth near
the nutricline, fractional resource allocation to the chloroplast
also increases steeply downward, resulting in sharp increases in
cellular chl:phyC. As a result, maximal bulk chlorophyll
concentration, i.e., SCM formation, tends to occur around the
nutricline. Significant relations among the strong vertical
gradients of cellular chl:phyC, nutricline, and SCM obtained in
our model are consistent with a previous study for the California
Current System35.

Global SCM distribution. The simulated global patterns in SCM
depth (Fig. 3) are consistent with observed results, as described
below. In our simulation, SCM are ubiquitous across the global
ocean as in a SCM estimation from observed surface chlorophyll
distributions36. Global features, such as a remarkable change in
SCM depth across the subtropical-subpolar boundary and SCM
shallowing in upwelling regions, agree with patterns of the
satellite-estimated global SCM distribution36. The simulation also
successfully describes observed shallowing of SCM depths toward

the coasts20,21. In summer in the Arctic and Antarctic Ocean, the
simulated SCM depth of 50–65 m is in line with
observations15–18. In February and August, SCM occur at similar
depths in most of oceanic regions. The successful simulation of
the global patterns in SCM depth was achieved by explicitly
incorporating phytoplankton’s resource allocation strategy into
the model.

Limitations of the model. Our model employs only one generic
phytoplankton species, and therefore does not explicitly resolve
community composition. In case studies in which the
chlorophyll-specific initial slope of growth versus irradiance, aI, is
changed (Supplementary Fig. 2), increasing aI causes deeper SCM
and increase in chlorophyll concentration around the SCM,
which improves reproducibility of chlorophyll around SCM, but
at the expense of making surface chlorophyll concentration
deviate far from the observations. In the standard case, our model
is tuned in order to simulate both surface and deep chlorophyll
concentration to a reasonable degree with the single generic
phytoplankton species. However, different photoacclimation
responses have been observed for different phytoplankton
lineages37. In the future, by introducing surface and deep species
having different traits for irradiance, our model can be expected
to reproduce more realistic SCM depth and chlorophyll con-
centration around the SCM. Another limitation of our model is
that it represents chlorophyll concentration only at scales larger

Fig. 2 Simulated vertical distributions of chlorophyll concentration, phytoplankton carbon biomass concentration and cellular chlorophyll to carbon
ratios. a–e Simulated representative vertical distributions of chlorophyll concentration (μg chl L−1) and f–j phytoplankton carbon biomass concentration
(phyC, μmol C L−1, broken blue line) and cellular chlorophyll to carbon ratio (cellular chl:phyC, g chl molC−1, solid red line) in a, f the subtropical center in
May, b, g equator in May, c, h subpolar region in July, d, i Antarctic Ocean in January, and e, j upwelling region in July in 2004 (the final simulation year).
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than about 10 m due to its vertical resolution. For finer-scale
vertical variation of chlorophyll concentration, aggregation rela-
ted to swimming behavior or buoyancy control20 may play some
roles. A mesoscale eddy has been observed to alter SCM depth
substantially, from 80 to 120 m38, which is beyond the scope of
this study due to the coarse resolution of our physical model.

Relevance to future climate change. Climate change is expected
to alter the oceanic environment, especially temperature, strati-
fication, and nutrient supply rates. Its impact on
phytoplankton39, which are the sustaining basis of marine food
chains, will be crucial for humankind. Our research has pro-
ceeded on the premise that improving models’ ability to repro-
duce the observed chlorophyll distribution will yield more reliable
future projections. By establishing a mechanistic link between the
individual-level photoacclimation response of phytoplankton and
chlorophyll distributions at the global scale, our results provide a
more sound basis for interpreting chlorophyll observations and
predicting how oceanic phytoplankton in particular, and hence
marine ecosystems more broadly, will respond to future climate
change.

Methods
Physical model. The physical part of the model is a global Oceanic General Cir-
culation Model, Meteorological Research Institute Community Ocean Model ver-
sion 3 (MRI.COM3)40. The model has horizontal resolutions of 1° in longitude and

0.5° in latitude south of 64° N, and tripolar coordinates are applied north of 64° N.
The model is discretized in 51 vertical layers. In the upper 160 m, tracers are
calculated at depths of 2.0, 6.5, 12.25, 19.25, 27.5, 37.75, 50.5, 65.5, 82.25, 100.0,
118.2, 137.5, and 157.75 m, and therefore vertical variation in chlorophyll con-
centration below the grid-scale is not represented in our model. The model was
forced with realistic wind stress, surface heat and freshwater fluxes40.

Marine ecosystem model. We developed a marine ecosystem model composed of
phytoplankton, zooplankton, nitrate, ammonia, particulate organic nitrogen, dis-
solved organic nitrogen, dissolved iron (Fed), and particulate iron. Our model is a
3D version of the FlexPFT model27 and is called the FlexPFT-3D model. The main
changes of the FlexPFT-3D from original FlexPFT model are the introduction of
iron limitation and substitution of the carbon-based phytoplankton biomass in the
original with nitrogen-based biomass herein. The iron cycle is based on the
nitrogen-, silicon- and iron-regulated Marine Ecosystem Model41 including the
process of scavenging and iron input from dust and sediment. Dissolved iron starts
from the distribution calculated by the Biological Elemental Cycling model in
Misumi et al.42. Nitrate starts from the distribution of World Ocean Database
199843. After the connection of the physical model, a 20 years of historical
simulation (1985–2004) is performed. In addition to the standard case with the
chlorophyll-specific initial slope of growth versus irradiance, aI, of 0.35 m2 E−1 mol
C (g chl)−1, the case studies with aI of 0.5 and 1.0 m2 E−1 mol C (g chl)−1 were
implemented. The case studies are calculated from 2003 to 2004, starting from the
distributions of biological variables at the end of 2002 in the standard case.

Phytoplankton growth. The procedures of numerical integration of phyto-
plankton concentration are described here. Readers can construct a numerical
model using the following equations. The derivations of the following equations
from theories are presented by Smith et al.27 (hereafter Smith2016). Values of
biological parameters are described in Supplementary Table 1.

Fig. 3 Simulated global distributions of subsurface chlorophyll maxima depth. Subsurface chlorophyll maxima (SCM) depth (m) in a February and b
August in the final simulation year. Blank regions in the ocean show that chlorophyll concentration is maximal at the ocean surface. Black lines indicate the
cruise tracks of R/V Hakuho-Maru KH12-3 and AMT-14 displayed in Fig. 1. White stars indicate the locations of representative profiles displayed in Fig. 2.
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In accordance with Pahlow’s resource allocation theory28, the FlexPFT model
assumes that resources are allocated among structural material, nutrient uptake
and, light harvesting (Supplementary Fig. 1a). The fraction of structural material is
assumed to be Qs/Q, where Q is the nitrogen cell quota, which is the intracellular
nitrogen to carbon ratio (mol N mol C−1), and Qs is the structural cell quota (mol
N mol C−1) given as a fixed parameter. The fraction of nutrient uptake is defined
as fV (non-dimensional), so that the residual fraction available for light-harvesting
is equal to ð1� Qs

Q � f vÞ. Optimal uptake kinetics further sub-divides the resources
allocated to nutrient uptake between surface uptake sites (affinity) and enzymes
for assimilation (maximum uptake rate), the fraction of which is given by fA and
(1− fA), respectively. Under nutrient-deficient conditions, the number of surface
uptake sites (and hence affinity) increases, while enzyme concentration (hence,
maximum uptake rate) decreases. The FlexPFT model assumes instantaneous
resource allocation, which means that resource allocation tracks temporal
environmental change with no lag time. It has elsewhere been demonstrated that an
instantaneous acclimation model provides an accurate approximation of a fully
dynamic acclimation model44.

We assume that acclimation responds to daily-averaged environmental
conditions, which are used to calculate the optimal values of fV, fA, and Q as f oV , f

o
A ,

and Qo . The optimal values are estimated at the beginning of a day and are retained
for the following 24 h. The daily-averaged environmental variables of the seawater
temperature, T (°C), intensity of photosynthetically active radiation, I, nitrogen
concentration, [N], which is the sum of nitrate and ammonia concentrations, and
dissolved iron concentration, [Fed] are defined as �T , �I, ½�N�, and ½Fed�, respectively.
Based on the assumption that diurnal variation of temperature and nutrient are
very small, T, [N] and [Fed] at the beginning of a day are used as �T , ½�N�, and ½Fed�,
respectively. For �I, we use the average in sunshine duration in a day, which is
slightly modified from the daily average in Smith2016.

Phytoplankton growth rate per unit carbon biomass (day−1), μ, is given by

μ ¼ μ̂I 1� Qs

Qo � f oV

� �
� ζNf oV V̂

N
; ð1Þ

where μ̂I is the potential carbon fixation rate per unit carbon biomass (day−1), ζN

is the energetic respiratory cost of assimilating inorganic nitrogen (0.6 mol C mol

N−1), and V̂
N
is the potential nitrogen uptake rate per unit carbon biomass (mol N

mol C−1 day−1). Equation (1) represents the balance of net carbon fixation and
respiration costs of nitrogen uptake, which are proportional to the fraction of

resource allocation. V̂
N ð½�N�; �TÞ is

V̂
N ð½�N�; �TÞ ¼ V̂0½�N�

ðV̂0

Â0
Þ þ 2

ffiffiffiffiffiffiffiffiffi
V̂0 ½�N�
Â0

r
þ ½�N�

; ð2Þ

where Â0 and V̂0 are the maximum value of affinity and maximum nitrogen
uptake rate.

From here, we will explain how the optimized values such as f oV , f
o
A, and Qo are

calculated. The optimal fraction of resource allocation to affinity, f oA , is given by

f oA ¼ ½1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Â0½�N�
Fð�TÞV̂0

s
�
�1

; ð3Þ

which is derived by substituting Eqs. (18) and (19) in Smith2016 into Eq. (17). Fð�TÞ
is temperature dependence, defined as

Fð�TÞ ¼ expf� Ea

R
½ 1
�T þ 298

� 1
Tref þ 298

� g; ð4Þ

where Ea is the parameter of the activation energy of 4.8 × 104 J mol−1, R is the gas
constant of 8.3145 J (mol K)−1, and Tref is the reference temperature of 20 °C.

Optimization for light-harvesting is described below. The potential carbon
fixation rate per unit carbon biomass (day−1), μ̂I (day−1), in Eq. (1) is

μ̂I ð�I; �T; ½Fed�Þ ¼ μ̂0
½Fed�

½Fed� þ kFe
Sð�I; �T; ½Fed�ÞFð�TÞ; ð5Þ

where μ̂0 and kFe are the maximum carbon fixation rate and half saturation
constant for iron, respectively. S specifies the dependence of light. Defining

μ̂limFe
0 ¼ μ̂0

½Fed �
½Fed �þkFe

,

μ̂I ð�I; �T; ½Fed�Þ ¼ μ̂limFe
0 Sð�I; �T; ½Fed� ÞFð�TÞ: ð6Þ

Iron limitation is imposed by substituting μ̂0 to μ̂limFe
0 in all equations in

Smith2016. S is defined as

Sð�I; �T; ½Fed� Þ ¼ 1� expf �aIΘ̂
o�I

μ̂limFe
0 Fð�TÞg; ð7Þ

where aI is the chlorophyll-specific initial slope of growth versus irradiance. Θ̂
o
,

optimal chloroplast chl:phyC (g chl (mol C)−1), is

Θ̂
o ¼ 1

ζchl
þ μ̂limFe

0

aI�I
f1�W0½ð1þ

Rchl
M

Ldμ̂
limFe
0

Þ expð1þ aI�I

ζchlμ̂limFe
0

Þ � g ð�I>I0Þ

Θ̂
o ¼ 0 ð�I ≤ I0Þ;

ð8Þ

where constant parameters ζchl and Rchl
M are the respiratory cost of photosynthesis

(mol C (g chl)−1) and the loss rate of chlorophyll (day−1), respectively. Ld is the
fractional day length in 24 h. W0 is the zero-branch of Lambert’s W function. I0 is
the threshold irradiance below which the respiratory costs overweight the benefits
of producing chlorophyll:

I0 ¼
ζchlRchl

M

LdaI
: ð9Þ

The optimal fraction of resource allocation to nutrient uptake, f oV , is

f oV ¼ μ̂I ð�I; �T; ½Fed�ÞQs

V̂
N ð½�N�; �TÞ

½�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Qsð

μ̂I ð�I; �T; ½Fed�Þ
V̂

N ð½�N�; �TÞ
þ ζN Þ�

�1

þ 1

vuut � ð10Þ

The optimal nitrogen cell quota, Qo is

Qo ¼ Qs½1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½Qsð

μ̂I ð�I; �T; ½Fed�Þ
V̂

N ð½�N�; �TÞ
þ ζN Þ�

�1
vuut � ð11Þ

Optimal cellular chl:phyC (g chl (mol C)−1), Θo , is

Θo ¼ ð1� Qs

Qo � f oV ÞΘ̂
o ð12Þ

which is the multiplication of the fraction of resource allocation to light-harvesting
and optimal chloroplast chl:phyC. The cellular chl:phyC and chloroplast chl:phyC
in Figs. 1 and 2 are optimal cellular chl:phyC, Θo , and optimal chloroplast chl:
phyC, Θ̂

o
, respectively. The relation in Eq. (12) is displayed in Fig. 1i-n. If we

artificially turn off the optimization of resource allocation by applying the constant
Qo and f oV to the all grid points, optimal cellular chl:phyC (Fig. 1i,j) only depends
on optimal chloroplast chl:phyC (Fig. 1k, l), and therefore significant variation of
SCM depth across the equatorial, subtropical, and subpolar regions is not
reproduced.

In the above equations, Eqs. (3), (8), (10), (11), and (12), optimized values
related to acclimation processes are obtained and then used in calculating the
phytoplankton growth rate. Phytoplankton growth rate per unit carbon biomass
(day−1), μ, in Eq. (1) is calculated at each time step:

μðI;T; ½N�; ½Fed�Þ ¼
μ̂I ðI;T; ½Fed�Þf oV ð1� f oAÞV̂0f

o
AÂ0½N�

μ̂IðI;T; ½Fed�ÞQ0ð1� f oAÞV̂0 þ ðμ̂IðI;T; ½Fed�ÞQ0 þ f oV ð1� f oAÞV̂0Þf oAÂ0½N�
; ð13Þ

where μ̂I ðI; T; ½Fed�Þ is obtained by substituting I, T, and [Fed] for �I, �T, and ½Fed� in
Eq. (5), respectively. Note that the model calculates circadian variation in solar
irradiance, I, and therefore the phytoplankton growth rate, μ, reaches its maximum
at noon local time and is zero during night. On the other hand, phytoplankton
optimization is assumed to respond to daily-averaged conditions. The FlexPFT
model introduces phytoplankton respiration proportional to chlorophyll content,
which is another important originality of Pahlow’s resource allocation theory30,33.

The carbon biomass-specific respiratory costs of maintaining chlorophyll, Rchl,
is

RchlðI;T; ½N�; ½Fed�Þ ¼ ðμ̂I ðI;T; ½Fed�Þ þ Rchl
M ÞζchlΘo: ð14Þ

The growth rate per unit nitrogen biomass, μN, is equal to that per unit carbon
biomass, μ. Instantaneous acclimation assumes that the quota of nitrogen to carbon
biomass obtained by phytoplankton growth is equal to the nitrogen quota in a cell:
μN ½pN �
μ½pC � ¼ Qo , where [pC] and [pN] are phytoplankton carbon and nitrogen

concentration in a cell, respectively. Since ½pN �
½pC � ¼ Qo , μN ¼ μ. When temporal Qo

change occurs, to satisfy the mass conservation, carbon or nitrogen biomass is
adjusted with the other fixed. The FlexPFT fixes carbon biomass, while the
FlexPFT-3D fixes nitrogen biomass to the temporal Qo change.

The rate of change in the phytoplankton nitrogen concentration, [pN], except
for the advection and diffusion terms is given by the following equation:

∂½pN�
∂t

¼ μ½pN� � ðRchl þ RcnstÞ½pN� �Mp½pN�
2 � ðextracellular excretionÞ � ðgrazingÞ;

ð15Þ
where Rcnst and Mp are the coefficient of respiration not related to chlorophyll
concentration and mortality rate coefficient, respectively. The extracellular
excretion is

ðextracellular excretionÞ ¼ γex½ðμ� RchlÞ½pN��; ð16Þ
where γex is the coefficient of extracellular excretion. The grazing term is
represented by

ðgrazingÞ ¼ G20 ° FðTÞ½zN�
½pN�aH

ðkHÞaH þ ½pN�aH ; ð17Þ
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where G20deg is the maximum grazing rate at 20 °C, and [zN] is zooplankton
concentration. Temperature dependency, F(T), is obtained by substituting T for �T
in Eq. (4). aH is the parameter controlling Holling-type grazing, which takes a value
from 1 to 2. kH is the grazing coefficient in Holling-type grazing.

Once [pN] is calculated, phytoplankton carbon concentration (mol C L−1), and
chlorophyll concentration (g chl L−1) are uniquely determined in an
environmental condition, without prognostic calculation. Therefore, an
instantaneous acclimation model can represent stoichiometric flexibility with lower
computational costs compared with a dynamic acclimation model44.

Model validation. The spatial pattern of simulated annually mean chlorophyll at
the ocean surface agrees with that of satellite observation45 (Supplementary Fig. 3).
The model reproduced the contrast of the surface chlorophyll concentration
between subtropical and subpolar regions, although simulated surface chlorophyll
concentration in subtropical regions is lower than that of the observation partly
due to the lack of nitrogen fixers. Nitrogen fixation is estimated to support about
30–50% of carbon export in subtropical regions46,47. Simulated surface chlorophyll
distribution in the Pacific equatorial region is close to the observed.

Our model properly simulates the meridional distribution of nitrate compared
with that of observations48 (Supplementary Fig. 4). The simulated horizontal
distribution of primary production is consistent with that estimated by satellite
data9,49 (Supplementary Fig. 5), although simulated primary production is
underestimated in subtropical regions, associated with the underestimation of
surface chlorophyll in these regions (Supplementary Fig. 3).

Data availability
Data presented in the figures are available at https://doi.org/10.6084/m9.
figshare.14609556. In situ chlorophyll data from the Atlantic Meridional Transect
Consortium (NER/0/5/2001/00680) are available at https://www.bodc.ac.uk/projects/
data_management/uk/amt/. Chlorophyll data from the R/V Hakuho-Maru KH12-3
cruise can be obtained from Sugie & Suzuki14.

Code availability
MRI.COM3 is available on reasonable request from Meteorological Research Institute.
The website (https://mri-ocean.github.io/) describing the details of use is currently only
available in Japanese, so if you have any questions, please contact the corresponding
author. The core code of the FlexPFT-3D is available on reasonable request from the
corresponding author. The NCAR Command Language (NCL) code used to create the
figures is available at https://www.ncl.ucar.edu/.
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